Fast Methods for Computing Centroidal Voronoi Tessellations

نویسندگان

  • James C. Hateley
  • Huayi Wei
  • Long Chen
چکیده

ACentroidalVoronoi tessellation (CVT) is aVoronoi tessellation inwhich the generators are the centroids for each Voronoi region. CVTs have many applications to computer graphics, image processing, data compression, mesh generation, and optimal quantization. Lloyd’s method, the most widely method used to generate CVTs, converges very slowly for larger scale problems. Recently quasi-Newton methods using the Hessian of the associated energy as a preconditioner are developed to speed up the rate of convergence. In this work a graph Laplacian preconditioner and a two-grid method are used to speed up quasi-Newton schemes. The proposed graph Laplacian is always symmetric, positive definite and easy to assemble, while the Hessian, in general, may not be positive definite nor easy to assemble. The two-grid method, in which an optimization method using a relaxed stopping criteria is applied on a coarse grid, and then the coarse grid is refined to generate a better initial guess in the fine grid, will further speed up the convergence and lower the energy. Numerical tests The first author was supported by 2010–2011 UC Irvine Academic Senate Council on Research, Computing and Libraries (CORCL) award. The second author was supported by NSFC (Grant No. 11301449), in part by Specialized Research Fund for the Doctoral Program of Higher Education (Grant No. 20134301120003). The third author was supported by National Science Foundation (NSF) (DMS-0811272 and DMS-1115961), in part by 2009–2011 UC Irvine Academic Senate Council on Research, Computing and Libraries (CORCL) award, and in part by Department of Energy prime award # DE-SC0006903. J. C. Hateley Irvine, CA, USA e-mail: [email protected] H. Wei Hunan Key Laboratory for Computation and Simulation in Science and Engineering, School of Mathematics and Computational Science, Xiangtan Uinversity, Xiangtan 411105, Hunan, People’s Republic of China e-mail: [email protected] L. Chen (B) Department of Mathematics, University of California, Irvine, Irvine, CA 92697, USA e-mail: [email protected]

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Centroidal Voronoi Tessellations: Applications and Algorithms

A centroidal Voronoi tessellation is a Voronoi tessellation whose generating points are the centroids (centers of mass) of the corresponding Voronoi regions. We give some applications of such tessellations to problems in image compression, quadrature, finite difference methods, distribution of resources, cellular biology, statistics, and the territorial behavior of animals. We discuss methods f...

متن کامل

Centroidal Voronoi Tessellations : Applications and Algorithms ∗ Qiang Du

A centroidal Voronoi tessellation is a Voronoi tessellation whose generating points are the centroids (centers of mass) of the corresponding Voronoi regions. We give some applications of such tessellations to problems in image compression, quadrature, finite difference methods, distribution of resources, cellular biology, statistics, and the territorial behavior of animals. We discuss methods f...

متن کامل

Numerical Studies of MacQueen’s k-Means Algorithm for Computing the Centroidal Voronoi Tessellations

We study a probabilistic algorithm for the computation of the centroidal Voronoi tessellation which is a Voronoi tessellation of a given set such that the associated generating points are centroids (centers of mass) of the corresponding Voronoi regions. We discuss various issues related to the implementation of the algorithm and provide numerical results. Some measures to improve the performanc...

متن کامل

Probabilistic methods for centroidal Voronoi tessellations and their parallel implementations

Centroidal Voronoi tessellations (CVTs) are Voronoi tessellations of a region such that the generating points of the tessellations are also the centroids of the corresponding Voronoi cells. In this paper, some probabilistic methods for determining CVTs and their parallel implementations on distributed memory systems are presented. By using multi-sampling in a new probabilistic algorithm we intr...

متن کامل

Approximations of a Ginzburg-Landau model for superconducting hollow spheres based on spherical centroidal Voronoi tessellations

In this paper the numerical approximations of the GinzburgLandau model for a superconducting hollow spheres are constructed using a gauge invariant discretization on spherical centroidal Voronoi tessellations. A reduced model equation is used on the surface of the sphere which is valid in the thin spherical shell limit. We present the numerical algorithms and their theoretical convergence as we...

متن کامل

Convergence of the Lloyd Algorithm for Computing Centroidal Voronoi Tessellations

Centroidal Voronoi tessellations (CVTs) are Voronoi tessellations of a bounded geometric domain such that the generating points of the tessellations are also the centroids (mass centers) of the corresponding Voronoi regions with respect to a given density function. Centroidal Voronoi tessellations may also be defined in more abstract and more general settings. Due to the natural optimization pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Sci. Comput.

دوره 63  شماره 

صفحات  -

تاریخ انتشار 2015